首页 文章 Go语言基础 使用kafka在spark 3 0中进行结构化流式传输
0
0
0
13

使用kafka在spark 3 0中进行结构化流式传输

struct结构体 结构 kafka spark

在Spark中使用的简介 (Introduction to working with(in) Spark)

After the previous post wherein we explored Apache Kafka, let us now take a look at Apache Spark. This blog post covers working within Spark’s interactive shell environment, launching applications (including onto a standalone cluster), streaming data and lastly, structured streaming using Kafka. To get started right away, all of the examples will run inside Docker containers.

一篇探讨Apache Kafka的文章之后,现在让我们看一下Apache Spark。 这篇博客文章介绍了在Spark的交互式Shell环境中工作,启动应用程序(包括在独立集群中),流数据以及使用Kafka进行结构化流。 为了立即开始,所有示例都将在Docker容器中运行。

火花 (Spark)

Image credit 图片信誉

Spark was initially developed at UC Berkeley’s AMPLab in 2009 by Matei Zaharia, and open-sourced in 2010. In 2013 its codebase was donated to the Apache Software Foundation which released it as Apache Spark in 2014.

Spark最初由Matei Zaharia于2009年在加州大学伯克利分校的AMPLab开发,并于2010年开源。2013年,其代码库捐赠给了Apache软件基金会,该基金会于2014年以Apache Spark的形式发布。

“Apache Spark™ is a unified analytics engine for large-scale data processing”

“ Apache Spark™是用于大规模数据处理的统一分析引擎”

It offers APIs for Java, Scala, Python and R. Furthermore, it provides the following tools:

它提供了Java,Scala,Python和R的API。此外,它还提供了以下工具:

  • Spark SQL: used for SQL and structured data processing.

    Spark SQL :用于SQL和结构化数据处理。

  • MLib: used for machine learning.

    MLib :用于机器学习。

  • GraphX: used for graph processing.

    GraphX :用于图形处理。

  • Structured Streaming: used for incremental computation and stream processing.

    结构化流 :用于增量计算和流处理。

Prerequisites:This project uses Docker and docker-compose. View this link to find out how to install them for your OS.

先决条件:该项目使用Docker和docker-compose。 查看此链接以了解如何为您的操作系统安装它们。

Clone my git repo:

克隆我的git repo:

git clone https://github.com/Wesley-Bos/spark3.0-examples.git

Note: depending on your pip and Python version, the commands vary a little:

注意: 根据您的pip和Python版本,命令会有所不同:

  • pip becomes pip3

    点变成pip3

  • python become python3

    python成为python3

Before we begin, create a new environment. I use Anaconda to do this but feel free to use any tool of your liking. Activate the environment and install the required libraries by executing the following commands:

在开始之前,请创建一个新环境。 我使用Anaconda来执行此操作,但是可以随意使用任何您喜欢的工具。 通过执行以下命令来激活环境并安装所需的库:

pip install -r requirements.txt

Be sure to activate the correct environment in every new terminal you open!

确保在 您打开的 每个 终端中 激活正确的环境

1. Spark交互式外壳 (1. Spark interactive shell)

Run the following commands to launch Spark:

运行以下命令以启动Spark:

docker build -t pxl_spark -f Dockerfile .docker run --rm --network host -it pxl_spark /bin/bash

Executing code, in Spark, can be performed within the interactive shell or by submitting the programming file directly to Spark, as an application, using the command spark-submit.

在Spark中执行代码可以在交互式外壳中执行,也可以使用命令spark-submit将编程文件作为应用程序直接提交给Spark。

To start up the interactive shell, run the command below:

要启动交互式shell,请运行以下命令:

pyspark

This post centres on working with Python. However, if you desire to work in Scala, use spark-shell instead.

这篇文章的重点是使用Python。 但是,如果您希望在Scala中工作,请改用spark-shell。

Try out these two examples to get a feeling with the shell environment.

尝试这两个示例,以了解shell环境。

Read a .csv file:

读取.csv文件:

>>> file = sc.textFile(“supplementary_files/subjects.csv”)
>>> file.collect()
>>> file.take(AMOUNT_OF_SAMPLES)>>> subjects = file.map(lambda row: row.split(“,”)[0])
>>> subjects.collect()

Read a text file:

读取文本文件:

>>> file = sc.textFile(“supplementary_files/text.txt”)
>>> file.collect()
>>> file.take(2)>>> wordCount = file.flatMap(lambda text: text.lower().strip().split(“ “)).map(lambda word: (word, 1)).reduceByKey(lambda sum_occurences, next_occurence: sum_occurences+next_occurence)>>> wordCount.collect()

Press Ctrl+d to exit the shell.

按Ctrl + d退出外壳。

2. Spark应用程序—在集群上启动 (2. Spark application — launching on a cluster)

Photo by Mike Bergmann on Unsplash
Mike BergmannUnsplash拍摄的照片

Spark applications can be performed by itself or on a cluster. The most straightforward approach is deploying Spark on a private cluster.

Spark应用程序可以单独执行,也可以在集群上执行。 最直接的方法是在专用集群上部署Spark。

Follow the instructions below to execute an application on a cluster.

请按照以下说明在集群上执行应用程序。

Initiate the Spark container:

启动Spark容器:

docker run --rm --network host -it pxl_spark /bin/bash

Start a master:

启动大师:

start-master.sh

Go to the web UI and copy the URL of the Spark Master.

转到Web UI,然后复制Spark Master的URL。

Start a worker:

开始工作:

start-slave.sh URL_MASTER

Reload the web UI; a worker should be added.

重新加载Web UI; 应该增加一个工人。

Launch an example onto the cluster:

在集群上启动一个示例:

spark-submit --master URL_MASTER examples/src/main/python/pi.py 10

View the web UI; an application has now been completed.

查看网页界面; 申请已完成。

Consult the official documentation for more specific information.

有关更多特定信息,请查阅官方文档

3. Spark应用程序-流数据 (3. Spark application — streaming data)

The above examples solely handled stationary code. The subsequent cases entail streaming data along with five DStream transformations to explore.

以上示例仅处理固定代码。 随后的情况需要流数据以及要探索的五个DStream转换。

Note that these transformations are a mere glimpse of the viable options. View the official documentation for additional information regarding pyspark streaming.

请注意,这些转换只是可行选项的一瞥。 查看 官方文档 以获取有关pyspark流的其他信息。

In a separate terminal, run the netcat command on port 8888:

在另一个终端中,在端口8888上运行netcat命令:

nc -lC 8888

In the Spark container, submit one of the cases for DStreams. Beneath is a summary of what each code sample does.

在Spark容器中,提交DStreams的一种情况。 下面是每个代码示例的摘要。

  • reduce_by_key.py: count the occurrence of the word ‘ERROR’, per batch.

    reduce_by_key.py每批计算单词“ ERROR”的出现。

  • update_by_key.py: count the occurrence of all the words throughout a stream of data.

    update_by_key.py :统计整个数据流中所有单词的出现。

  • count_by_window.py: count the number of lines within a window.

    count_by_window.py :计算窗口中的行数。

  • reduce_by_window.py: calculate the sum of the values within a window.

    reduce_by_window.py :计算窗口内值的总和。

  • reduce_by_key_and_window.py: count the occurrence of ERROR-messages within a window.

    reduce_by_key_and_window.py :计算窗口中ERROR消息的发生。

Enter text data inside the netcat terminal. In the Spark terminal, the data is displayed accordingly. An example can be seen in the images below.

netcat终端中输入文本数据。 在Spark终端中,将相应显示数据。 下图显示了一个示例。

spark-submit python_code_samples/update_by_key.py
Example of update_by_key.py
update_by_key.py的示例

4. Spark结构化流 (4. Spark structured streaming)

Lastly, there is structured streaming. A concise, to the point, description of structured streaming reads: “Structured Streaming provides fast, scalable, fault-tolerant, end-to-end exactly-once stream processing without the user having to reason about streaming.”

最后,是结构化的流媒体。 简而言之,对结构化流的描述为: “结构化流提供了快速,可伸缩,容错,端到端的一次精确流处理,而用户无需推理流。”

The objective of this last section is to ingest data into Kafka, access it in Spark and finally write it back to Kafka.

最后一部分的目的是将数据吸收到Kafka中,在Spark中访问它,最后将其写回到Kafka。

Image credit 图片信誉

Launch the Kafka environment:

启动Kafka环境:

docker-compose -f ./kafka/docker-compose.yml up -d

Produce and consume data:

产生和使用数据:

For convenience, open two terminal beside each other.

为方便起见,请打开两个彼此相邻的端子。

python kafka/producer.pypython kafka/consumer.py

Submit the application to Spark (inside the Spark container):

将应用程序提交到Spark(在Spark容器内部):

spark-submit --packages org.apache.spark:spark-sql-kafka-0–10_2.12:3.0.0 python_code_samples/kafka_structured_stream.py

Open a new terminal and start the new_consumer:

打开一个新终端并启动new_consumer:

python kafka/new_consumer.py

In the producer terminal, enter data; both consumers will display this data. The messages can be seen in the Confluent Control centre as well.

生产者终端中,输入数据; 两个使用者都将显示此数据。 这些消息也可以在Confluent控制中心中看到。

回顾 (Recap)

Throughout this article, we explored the following issues:

在本文中,我们探讨了以下问题:

  • Reading files within the interactive shell.

    在交互式外壳中读取文件。

  • Launching an application; by itself and on a cluster.

    启动一个应用程序; 本身和群集上。

  • Working with streaming data.

    处理流数据。

  • Working with structured streaming.

    使用结构化流。

An interesting blog post from Databricks gives a more extensive view of structure streaming. This particular post explains how to utilise Spark to consume and transform data streams from Apache Kafka.

Databricks的一篇有趣的博客文章提供了结构流的更广泛视图。 这篇特别的文章介绍了如何利用Spark来使用和转换Apache Kafka中的数据流。

Lastly, I want to thank you for reading until the end! Any feedback on where and how I can improve is much appreciated. Feel free to message me.

最后,感谢您的阅读直到最后! 非常感谢您对我在哪里以及如何改进的任何反馈。 随时给发消息。

翻译自: https://medium.com/swlh/structured-streaming-in-spark-3-0-using-kafka-db44cf871d7a

到此这篇关于“使用kafka在spark 3 0中进行结构化流式传输”的文章就介绍到这了,更多文章或继续浏览下面的相关文章,希望大家以后多多支持Go语言编程网!

相关文章

创建博客

开始创作
写作能提升自己能力,也能为他人分享知识。

在线教程

查看更多
  • Go入门指南

    Go入门指南

  • Go语言高级编程

    Go语言高级编程

  • Go Web 编程

    Go Web 编程

  • GO专家编程

    GO专家编程

  • Go语言四十二章经

    Go语言四十二章经

  • 数据结构和算法(Golang实现)

    数据结构和算法(Golang实现)

Go语言编程网

微信扫码关注订阅号


博客 资讯 教程 我的